Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests

نویسندگان

  • Chi-Chi Lin
  • Kuo-Pin Yu
  • Ping Zhao
چکیده

In this study, the impact factors of temperature, relative humidity (RH), air exchange rate, and volatile organic compound (VOC) properties on the VOC (toluene, n-butyl acetate, ethylbenzene, and m,p-xylene) specific emission rates (SERs) and concentrations from wooden flooring were investigated by chamber test for 8 days. The tested wood in this study is not common solid wood, but composite wood made of combined wood fibers. The experiments were conducted in a stainless-steel environmental test chamber coated with Teflon. The experimental results within 8 days of testing showed that, when the temperature increased from 15 to 30 1C, the VOC SERs and concentrations increased 1.5–129 times. When the RH increased from 50% to 80%, the VOC concentrations and SERs increased 1–32 times. When the air change rate increased from 1 to 2h , the VOC concentrations decreased 9–40%, while the VOC SERs increased 6–98%. The relations between the boiling points of the VOCs and each of the normalized VOC SERs and concentrations were linear with negative slopes. The relations between the vapor pressures of the VOCs and each of the normalized VOC SERs and concentrations were linear with positive slopes. At 15 1C, RH50%, the relations between the diffusivities of VOCs and each of the normalized VOC equilibrium SERs and concentrations were linear with a positive slope. & 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sumin Kim , Hyun - Joong Kim and Suck - Joong Moon Analyser Evaluation of VOC Emissions from Building Finishing Materials Using a Small Chamber and VOC

A test chamber method was developed to provide a small and simple emission testing facility capable of testing construction products over a range of climatic parameters, such as temperature, ventilation rate and air velocity, that could be varied independently around typical indoor values. Volatile organic compounds (VOCs), specifically the aromatic hydrocarbons fraction, were measured using a ...

متن کامل

Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions

Building materials (BMs) are major contributors to indoor emission sources of volatile organic compounds (VOCs). In this study, 8 kinds of BMs (including conventional and green) for ceiling, cabinetry, and flooring commonly used indoors were tested in a 216 L chamber. Primary emissions of carbonyls (C1 to C8 aldehydes and ketones) at 48 h were 75e673 mg m 2 h 1 from conventional BMs, and 62 e15...

متن کامل

Predicting the emission rate of volatile organic compounds from vinyl flooring.

A model for predicting the rate at which a volatile organic compound (VOC) is emitted from a diffusion-controlled material is validated for three contaminants (n-pentadecane, n-tetradecane, and phenol) found in vinyl flooring (VF). Model parameters are the initial VOC concentration in the material phase (C0), the material/air partition coefficient (K), and the material-phase diffusion coefficie...

متن کامل

Characteristics on indoor air pollutant emission from wood-based flooring by environmental-friendly natural adhesive using CNSL

To discuss the reduction of formaldehyde and volatile organic compound (VOC) emissions from engineered flooring, cashew nut shell liquid (CNSL)-formaldehyde (CF) resin and CF/PVAc resin were applied for the maple face of the veneer bonding on plywood. The CF resin was used to replace urea-formaldehyde (UF) resin in the formaldehyde-based resin system in order to reduce formaldehyde and VOC emis...

متن کامل

Effects of airflow on VOC emissions from "wet" coating materials: experimental measurements and numerical simulation

The impact of airflow on volatile organic compound (VOC) emissions from “wet” materials has long been noticed. However, a comprehensive mass transfer model that can predict such an impact has not been reported. The objective of this research was to fill that gap. First, we measured the VOC emissions of “wet” coating materials (a decane and a wood stain) using a small-scale (0.4 m3) and a full-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015